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The lattice cluster theory is developed for binary blends of two structured monomer co-

polymers in the simplifying limit of an incompressible system and high molecular

weights. The major advance in the present theory is the inclusion of nonrandom mixing

effects that lead to a monomer sequence dependence of the Helmholtz free energy with-

out the introduction of new adjustable parameters beyond those present in descriptions of

binary homopolymer blends formed from the constituent monomers. Equivalently, the

sequence dependent contributions are shown to emerge from a proper determination of

the “surface fractions” in individual copolymer chains. The general theory applies to

blends of random copolymer, diblock copolymers, alternating copolymers, as well as of

copolymers with kinetically controlled monomer sequences. The theory is illustrated for

purely random copolymer blends of deuterated and hydrogenated polybutadienes, where

the computed phase boundaries depart qualitatively from those predicted by random co-

polymer Flory-Huggins theory.
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The technological and scientific importance of random copolymers arises, in

part, from their ability to enhance the mixing of otherwise immiscible systems. The

earliest theories [1–7] of random copolymer systems apply Flory-Huggins type the-

ory to random copolymers. This random copolymer extension [2,3] of Flory-Huggins

theory is widely used, in part, because of its simplicity but also because it captures

several important physical trends. The fact that these earliest theories [1–7] are enor-

mously useful in explaining the general patterns of miscibility observed in many ran-

dom copolymer containing systems cannot, however, overshadow many limitations

of the underlying classic FH theory. These limitations include the complete insensi-

tivity of the predicted thermodynamic properties to the monomer sequence, to chain

architectures, and to individual monomer structures. As a partial remedy for these de-

ficiencies, some theoretical descriptions [8–10] postulate an explicit dependence of

the system’s free energy on the monomer sequence by introducing a set of pheno-

menological interaction parameters �ijk,lmn between triads of sequential monomers on

two different polymer chains and by employing additional ad hoc assumptions to re-
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duce the huge number of resulting �ijk,lmn parameters to a manageable few additional

adjustable parameters beyond those in random copolymer FH theory.

We have developed the lattice cluster theory [11–14], which overcomes all the

above mentioned deficiencies of FH theory. By combining a significantly more ad-

vanced solution to the lattice model of polymer systems with a description of mono-

mer molecular structures, the LCT free energy emerges naturally as monomer

sequence dependent without the need for additional adjustable parameters beyond

those necessary for treating binary blends of homopolymers constituted from the

monomers present in the copolymer chains [14]. The LCT achieves this improved de-

scription, in part, by use of a cluster expansion to include contributions from

nonrandom mixing effects, i.e., from short range correlations neglected entirely by

FH theory. Indeed, the lowest order LCT for copolymers is equivalent to a compress-

ible system extension of random copolymer FH theory, in which the interactions are

described more realistically as arising between submonomer units, called united

atom groups, that are used to represent the monomer molecular structures [14].

The derivation of this more molecularly oriented LCT description of copolymer

systems, however, involves enormous algebraic complexity, especially when the sys-

tem is treated as compressible (necessity for describing the pressure dependence) and

when the individual monomers of both random copolymers are permitted to have ar-

bitrarily chosen molecular structures [14]. This complexity stems from the need for

averaging the nonrandom mixing corrections to the free energy over all possible spe-

cific monomer sequences for all chains in the system. Because of this technical com-

plexity, the extension of the LCT for compressible binary mixtures of statistical

copolymers has so far been accomplished [14,15] for a very limited number of special

cases.

In addition to developing complete and comprehensive theories, there is also a

need for more approximate, analytically simpler, yet still more realistic theories with

a minimal number of adjustable parameters. For example, we have recently devel-

oped [16] a simplified version of the LCT for statistical copolymers that represents an

extension of random copolymer FH theory [2,3]. This more approximate theory,

called the random copolymer lattice cluster theory for pedestrians, is analytically

quite simple and is designed for probing general physical trends that lie outside the

scope of random copolymer FH theory. Like FH theory, this simplified theoretical ap-

proach [16] assumes the blend to be incompressible and considers only uncorrelated

(i.e., random mixing assumption) copolymer-copolymer interactions. On the other

hand, the pedestrian copolymer LCT [16] involves two significant improvements be-

yond the copolymer FH approximation. The first improvement lies in describing the

uncorrelated interactions in terms of more realistic interactions between the united

atom groups that are used to represent the monomer structures. As a second improve-

ment, the theory is augmented with a temperature-independent contribution �s to the

effective interaction parameter �. This �s is determined explicitly (with no adjustable

parameters) from the copolymer lattice cluster theory in the incompressible,

athermal, fully flexible, long-chain limit. For example, the copolymer �s is found [17]
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to dominate the temperature-dependent portion of � in binary blends of norbor-

nene-co-ethylene random copolymers. In spite of its simplicity, the pedestrian ran-

dom copolymer theory [16] enables the successful interpretation of a large body of

data that cannot be explained with random copolymer FH theory. In addition to the

norbornene-co-ethylene random copolymer mixtures already cited, these applica-

tions include ones to isotopic blends of saturated and unsaturated polybutadienes and

to blends of ethylene-co-�-alkene random copolymers with sPB [16]. The poly-

butadiene isotopic blends are interesting in displaying a transition from upper to

lower critical solution temperature behavior as the chain microstructure (i.e., the co-

polymer compositions) is varied [18].

Our previous work [19] for binary homopolymer blends indicates, however, the

importance of nonrandom mixing contributions to the LCT free energy, even in the

enormously simplifying limit of high pressures and high molecular weights. These

nonrandom mixing terms provide a correction to the number of heterocontacts due to

the packing constraints imposed by the polymer chain connectivity and by monomer

structures and represent a generalization of the mathemathically rather vague Gu-

ggenheim “surface fraction” concept [20,21] to a structured monomer homopolymer

blend [19]. Thus, it is quite desirable to generalize this LCT pedestrian treatment to a

copolymer blend by extending the existing LCT pedestrian approach [16] for copoly-

mer blends beyond the random mixing assumption for the interactions. As we demon-

strate here, this extension leads to a monomer sequence dependence of the free energy

without the addition of new adjustable parameters.

Section 1) describes the extended lattice model and the basic features of the LCT

for more general case of compressible systems. Section 2) specializes the theory to

the high molecular weight, incompressible system limit of the LCT for binary blends

of arbitrary copolymers (diblock, alternating, completely random, etc.), while sec-

tion 3) further specializes this limiting theory to isotopic blends of two purely random

copolymers. The theory is illustrated by considering the effective interaction parame-

ter � and the phase boundaries for isotopic polybutadiene blends, where the miscibil-

ity pattern departs qualitatively from the patterns assessible to random copolymer

Flory-Huggins theory [2,3].

RESULTS

1. Extended Lattice Model and LCT: The extended lattice model of polymer

systems rectifies a significant deficiency of the standard lattice model that requires a

single monomer to occupy only a single lattice site. While this single site occupancy

constraint emerges as a natural consequence of treating the monomers as struc-

tureless, entropically identical, indistinguishable entities, molecules of different

chemical species are not structurally identical and exhibit a wide variety of sizes and

shapes, even within a homologous series. Including the basic structural characteris-

tics of monomers into a lattice theory clearly produces a more realistic modeling of

polymer systems, in spite of the obvious limitations imposed by the descrete lattice
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morphology. The LCT combines this more realistic description of monomer structure

with a significantly improved solution of the extended model and generates analytical

expressions for the free energy in a form suitable for the complete thermodynamic

analysis of diverse polymer systems [22].

When applied to binary blends of two copolymers, designated as AxB1–x and

CyD1–y, this extended lattice model represents the individual monomers of species A,

B, C, and D with structures composed, respectively, of sA, sB, sC, and sD submonomer

units, each of which occupies a single lattice site. Consequently, the athermal limit of

the noncombinatorial entropy for this copolymer blend is nonzero and depends

explicitly on both the structural details of monomers and on the copolymer compositions

x and y. This combinatorial entropy is almost entirely absent when the monomers A, B,

C, and D are treated in the traditional manner as structureless entities. The values of

sA, sB, sC, and sD are, generally, chosen to reflect relative monomer sizes. In the case of

polyolefins, for instance, these single lattice site submonomer units are selected as

CHn (n = 0,1,2, or 3) united atom groups.

A single AxB1–x copolymer chain (called component 1 below) consists, on aver-

age, of nA monomers of species A and nB monomers of species B that are both distrib-

uted along the AxB1–x chain backbone, while a single CyD1–y chain (called component

2 below) contains nC monomers of species C and nD monomers of species D that are

placed along the CyD1–y chain backbone. For simplicity, both the AxB1–x and CyD1–y

chains are taken as compositionally monodisperse copolymers with the uniquely

specified monomer fractions x = nA/(nA + nB) and y = nC/(nC + nD). The individual

monomers in an AxB1–x chain are joined to each other by (nA + nB – 1) backbone bonds.

For a purely random AxB1–x copolymer, there are x(nA – 1) connecting bonds between

successive AA monomers, (1 – x)(nB – 1) connecting bonds between BB pairs, and

2xnB junction bonds between AB or BA monomers. Similarly, the number of connect-

ing bonds in a purely random CyD1–y chain equals (nC + nD – 1), and these bonds link

CC, DD, and CD pairs with a total of y(nC – 1), (1– y)(nD – 1), and 2ynD bonds, respec-

tively. The chain occupancy indices M1 and M2 are defined as sums of products of cor-

responding numbers of monomers {n�} and their occupancy indices {s�} (� �
A,B,C,D), yielding M1 � MA + MB = nAsA + nBsB and M2 � MC + MD = nCsC + nDsD. The

binary copolymer blend is represented as a set of n1 and n2 AxB1–x and CyD1–y chains,

respectively, residing on a three-dimensional cubic lattice with Nl lattice sites and a

cordination number z = 6.

Excess free volume in compressible descriptions of the blend is modeled by the

presence of nv empty sites with a volume fraction �v = nv/Nl = 1 – (n1M1 + n2M2)/Nl = 1

– �1 – �2, where �1 and �2 are the actual volume fractions of two blend species and

where �v is determined as a function of pressure, temperature, and composition from

the equation of state. The unit of free volume is the volume associated with a single

empty lattice site, that is, thus, much smaller than the monomer volumes, another re-

alistic feature of the LCT that is absent in various generalization [23,24] of FH theory

to compressible systems.
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Endowing monomers with molecular structures also provides an improved repre-

sentation of monomer-monomer interactions. No two united atom groups may oc-

cupy the same lattice site, and all united atom groups of species � and � on

neighboring lattice sites interact with the (monomer averaged) attractive van der

Waals energy ���. The minimal model, therefore, contains ten independent energies

��� for compressible AxB1–x/CyD1–y mixtures with A � B � C � D, while an even more

realistic model with different (”specific”) interactions within a monomer yields con-

siderably more energy parameters � ��
�	( )

.

The extended lattice model of AxB1–x/CyD1–y blends is solved by using cluster ex-

pansion methods and by describing the influence of short range correlations from

chain portions with as many as four bonds [11,14]. The presence of these short range

correlations is responsible for nonrandom mixing and leads naturally within our ap-

proach to a monomer sequence and monomer structure dependence of computed ther-

modynamic properties. The Helmholtz free energy F of the copolymer blend is

obtained as a perturbative expansion about the free energy F(FH) generated from a

modified FH theory in which the blend is treated as compressible and in which the

uncorrelated (i.e., determined by random mixing) monomer-monomer interactions

are described in terms of the interactions between united atom groups or monomer

portions. The LCT free energy F is written formally as

F

N k T

F

N k Tl B

FH

l B



( )

+ corrections (1)

where the corrections to F(FH) are derived [11,14] as polynomials in the actual volume

fractions �1 and �2. When one or both of the blend components contains a random or

quasi-random distribution of monomers along the chain backbone, these free energy

corrections must be averaged over a statistical distribution of all possible monomer

sequences for all chains in the system, an averaging that makes the calculations ex-

tremely tedious. Technical details and the diagramatic representation of F are par-

tially described [14] elsewhere.

2. High molecular weight, incompressible limit of LCT: While the LCT ap-

proximation for the corrections in (1) is algebrically lengthy and suitable only for nu-

merical analysis, considering the high molecular weight, incompressible limit of the

LCT enormously simplifies the algebra and produces rather compact and physically

revealing formulas for the thermodynamic properties of homopolymer binary blends

[19]. Thus, we apply this same limit to binary AxB1–x/CyD1–y copolymer blends to

achieve the maximum degree of the algebraic simplicity and physical insights. Let � �
�� 
 � � �2 designate the composition of the incompressible blend. In the incompress-

ible, long chain limit, the Helmholtz free energy of mixingFmix for the AxB1–x/CyD1–y

copolymer blend takes the form,
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where the subscripts 1 and 2 label the blend components, the geometrical coefficient

N i

k( )
(i = 1,2) denotes the number of runs of k sequential bonds (see below) in a single

chain of component i, and where the interaction energy parameters � i j, are particular

linear combinations of the nearest neighbor van der Waals attractive energies ��� (�,�
� A, B, C, D),

� � � � ��" � " �# � # 	" 	 " 	#ij

i j i j i j
m m m m m m m
 � � �( ) ( ) ( ) ( ) ( ) ( )

	 #
( ) ( )i j

m , i, j = 1, 2, (3)

with the pairs (�,	) and (",#) labeling the two different monomer species in chains of

components i and j, respectively. The statistical weights m
i

�
( )

in (3) represent the frac-

tions of the Mi united atom groups in a single chain of component i (i = 1,2) that belong

to species � (� � A, B, C, D). Thus, we simply have m
i

�
( )

= M�/Mi = n�s�/Mi. The prod-

uct m mA A

( ) ( )1 1
, for instance, is proportional to the contact probability for interactions be-

tween uncorrelated (i.e. randomly mixed) AA submonomer units, and �11 is a

statistically averaged interaction energy between a pair of submonomer units belong-

ing to the copolymer species 1. The energy � of (2) is the exchange energy for the co-

polymer blend and is determined from the energies {� ij } in the standard fashion of,

� 
 � �� � �11 22 122 (4)

The last two terms in (2) are the monomer sequence dependent contributions given by
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where the energy parameter ��–(i) specifies an averaged interaction energy between a

single united atom group of the species � and an averaged one of component i,

��–(i) = � ��� � �	 	m m
i i( ) ( )� , i = 1,2, � = A, B, C, D (7)

with the subscripts � and 	 again representing the monomer species of the component

i (when i =1, � � A and 	 � B, while for i = 2, � � C and 	 � D).

The monomer sequence dependent geometrical factors N i

( )3
(X $$$ Y) of (5) and (6)

enumerate the number of configurations of three sequential bonds (called tetramers)

in a single chain of component i that have X and Y submonomer units at the ends of the

tetramer (X,Y% {A,B} for i = 1 and X,Y% {C, D} for i = 2). The notation N i

( )2
(X –X – Y)

designates the number of configurations of two sequential bonds (in a single chain of

component i) that link three united atom groups with the specific connectivity in

which X is bonded to X, and the middle X is bonded to Y. Note that the coefficients

N Ni

k

i

k( ) ( )
, (X $$$ Y), and N i

k( )
(X – X – Y) all depend on the composition of the copolymer

component i as well as on the statistics of the sequence distribution. The next section

and the Appendix illustrate the evaluation of the geometrical factors N i

k( )
, N i

k( )
(X $$$$

Y), and N i

k( )
(X – X – Y) for random copolymers. Within the incompressible, long chain
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limit of the LCT for AxB1–x/CyD1–y mixtures (with A � B � C � D), the number of inde-

pendent interaction energies, which are the adjustable parameters of the theory, is re-

duced to eight from the ten parameters present in the minimal theory for compressible

systems. Of course, when C=A or B, etc., the number of energy parameters dimin-

ishes.

Equation (2) is presented in a general form that describes blends of random copol-

ymers, diblock copolymers, alternating copolymers, as well as of copolymers with

kinetically controlled monomer sequences. The differences between all these copoly-

mer systems appear in the 1 and 2 terms through the explicit dependence of the geo-

metrical coefficients N i

k( )
(X $$$ Y), and N i

k( )
(X – X – Y) of (5) and (6) on the monomer

sequence distribution. There is no need for extra adjustable parameters to represent

the sequence dependence. The remaining terms of (2) are common for all types of co-

polymers. In particular, the first two terms on the right-hand side of (2) represent the

configurational entropy, while the contribution �(1 – �)[N1

2( )
/M1 – N 2

2( )
/M2]

2/z2 is the

noncombinatorial entropy of mixing which arises from nonrandom mixing effects as-

sociated with packing chains that have monomers of different sizes and shapes and,

generally, different compositions x and y. The sequence independent ratios ri �
N1

2( )
/Mi for the AxB1–x and CyD1–y copolymers may be expressed more conveniently as

[16]

r1 �
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where s
tri

�
( )

and s
tetr

�
( )

are the numbers of tri- and tetrafunctional united atom groups in a

single monomer of species � and where the Mi &' limit has been invoked. This

entropic contribution is contained in the pedestrian LCT theory [16]. The remaining

terms in (2) are of energetic origin as discussed below.

The incompressible limit SANS � parameter is defined through the free energy of

mixing Fmix as

(
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2
1 2

1 1
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2
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,

F N k T

M M

mix

l B
T V site
 �
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where the subscript site on �site indicates that the � parameter is expressed per lattice

site (or, equivalently, as an interaction parameter between united atom groups). The
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usual experimental SANS � is obtained from the extrapolated zero-angle scattering

internsity I(0) as

�
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) � ) �
exp 
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where Ni and )i are the polymerization index and the molar monomer volume of com-

ponent i, respectively, kN is the scattering contrast factor, and )0 is an arbitrary chosen

normalization volume. The theoretical and experimental � parameters of (10) and

(11) are related to each other by a simple scaling [16,25],

�exp = c�site (12)

with the conversion factor c equaling c = s1s2/[s1(1 – �) + s2�] when choosing )0 =

[�/)1 + (1 – �)/)2]
–1 and being c = (s1s2)

1/2 for the simpler choice of )0 = ()1)2)
1/2.

Evaluating the free energy derivative in (10) converts it into the slightly more com-

pact form,
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The first term on the right-hand side of (13) is the athermal limit entropic component

of �site that depends only on the monomer structures of the two copolymer blend com-

ponents and on their compositions x and y. The remaining terms are the tempera-

ture-dependent contributions. The Flory-Huggins-Guggenheim (FH-G) type term �
(z – 2)/(2kBT) describes the interactions between uncorrelated united atom groups and

is the energetic portion of the simpler pedestrian random copolymer LCT. The second

term with the overall factor of �/kBT contains both composition dependent and inde-

pendent portions. This second term provides a correction to the random mixing

(FH-G) approximation due to the packing constraints imposed by the fact that the two

copolymer components are structurally different (i.e. have different monomer struc-

tures and different compositions). The remaining four terms of (13) represent a cor-

rection to the temperature dependent portion of �site that arises from the energetic and

structural heterogeneity of all copolymer chains. These terms are absent for an A/C

binary homopolymer blend and therefore vanish identically if we set B � A and D � C
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in (3–7) and (13). The monomer sequence dependence of �site enters through the 1

and 2 which differ for alternating, diblocks, or random copolymers of the same

monomer compositions.

3. Isotopic mixtures of unsaturated (or saturated) polybutadienes: Isotopic

blends are the simplest examples of AxB1 – x/CyD1 – y binary copolymer blends since

the monomers A and C (as well as B and D) have identical structures and differ only in

the interaction energies {���} due to the replacement of the hydrogen atoms by deute-

rium. This feature significantly reduces the number of adjustable interaction parame-

ters and, thus, provides ideal systems for testing theoretical predictions. We now

specialize to an isotopic blend of polybutadienes as a widely studied system [18,

26–28]. Let component 1 designate a purely random AxB1 – x copolymer with a frac-

tion x of perdeuterated 1,2 units and a fraction (1 – x) of perdeuterated 1,4 units,

whereas component 2 denotes a statistical copolymer CyD1 – y of hydrogenated 1,2 and

1,4 PB monomers.

Figure 1 depicts the obvious united atom monomer structures for 1,2 and 1,4

monomers in the two blend components. Noticing from Figure 1 that the monomer

structures for PB imply that sA = sB = sC = sD = 4, sA

tri( )
= sC

tri( )
= 1, sB

tri( )
= sD

tri( )
= 0, and sA

tetr( )

= sB

tetr( )
= sC

tetr( )
= sD

tetr( )
= 0, the partial entropic structural parameters r1 and r2 of (8) and

(9) simplify to

r1 =
( ) ( )

( )

4 1 4 1

4 4 1

4

4

� � �

� �



�x x

x x

x
(14)

and

r2 =
( ) ( )

( )

4 1 4 1

4 4 1

4

4

� � �

� �



�y y

y y

y
(15)

As shown in the Appendix, the ratios pi � N i

( )3
/Mi (i = 1,2) of (13) and the ratios pi

X Y( , )

� N i

( )3
(X $$$ Y)/Mi and ri

X X Y( )� � � N i

( )2
(X – X – Y)/Mi of (5) and (6) can likewise be ex-

pressed for PB blends in the long chain limit (Mi & ') as simple polynomials in the

composition of the purely random copolymer component i,

p
x

1

4 2

4



�
, p

y
2

4 2

4



�
(16)

p
x x xA A

1

2 34

4

( )$$$ 

� �

, p
y y yC C

2

2 34

4

( )$$$ 

� �

(17)

p
x x x xB B

1

2 36

4

( )$$$ 

� � �

, p
x y y yD D

2

2 36

4

( )$$$ 

� � �

(18)
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p
x x xA B

1

2 37 5 2

4

( )$$$ 

� �

, p
y y yC D

2

2 37 5 2

4

( )$$$ 

� �

(19)

r
x xA A B

1

23 3

4

( ~ )� 

�

, r
y yC C D

2

23 3

4

( ~ )� 

�

(20)

and

r
x xA B B

1

22 2

4

( ~ )� 

�

, r
y yC D D

2

22 2

4

( ~ )� 

�

(21)

The notation X – X ~ Y of (20) and (21) distinguishes the connecting bonds X ~ Y by

wiggly lines ~, while the bonds X – X lying inside the monomers are denoted by solid

lines –.

In order to reduce the number of adjustable parameters to the bare minimum, we

assume that there are only three independent microscopic van der Waals energies �CC,

�DD, and �CD representing interactions between two hydrogenated 1,2-1,2, 1,4-1,4,

and 1,2-1,4 CHn groups, respectively. The remaining seven energy parameters are de-

termined by using simple scaling relations in the spirit of the polarizability model of

Bates et al. [29],

�AA = �2�CC, �BB = �2�DD, �AB = �2�CD (22)

and

�AC = ��CC, �BD = ��DD, �AD = �BC = ��CD (23)

where the scaling factor � is less than unity, to reflect the weaker attraction of the

deuterated species, and � is taken, for simplicity, as the same for the 1,2 and 1,4 units.

The identity of the monomer occupancy indices s� in both blend components (sA = sB

and sC = sD) implies that the statistical weights m
i

�
( )

coincide with the corresponding

copolymer compositions,
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Figure 1. United atom structures for 1,2 and 1,4 polybutadiene (PB) monomers. Open circles denote

united atom groups belonging to the chain backbone, while filled circles indicate the side

groups.



m m xA B

( ) ( )
,

1 1
1
 � 
 and m m yC D

( ) ( )2 2
1
 � 
 (24)

Substituting (14–24) into (3–9) and the latter into (13) produces, after some algebra,

the interaction parameter �site as a function of three van der Waals energies �CC, �DD,

and �CD, the deuterium-hydrogen scaling factor �, the random copolymer composi-

tions x and y, and the blend composition �,

�site =
1

576

1

24
2 2 62[ ] {( )x y

k T k T k T

CC

B

DD

B

CD

B

� � � �
�

�
�

�

�
� � �

� � �
� � 2 3 34 6x y� � �( )�

+ [( ) ( ) ] [( ) )] [2 6 7 12 5 12 4 6 422 2 2� � � � � � � � � �� � � � � � � �x y xy x y xy] }2 2� �

+
1

24
6 12 7 122 2� �

� � � �CD

B

DD

Bk T k T
x�

�

�
�

�

�
� � � � � � �{[( ) ( ) ] [( 5 12 6 12 2� � �� � �) ]y

+ 4 1 3 2 3 86 87 87 862 2[( ) ] [ ] [ ] }� � � � � � � � �� � � � � � �xy x y

+
1

24
1 44 4 6 2 62�

� � �DD

Bk T
x y

�

�
�

�

�
� � � � � � �( ) [ ( ) ( ) ] (25)

Equation (25) departs significantly from that obtained from our simple extension

[16] of Flory-Huggins random copolymer theory that includes a temperature inde-

pendent portion of the interaction parameter and that describes the random mixing in-

teraction energy in terms of united atom interactions,

�
� � �

�site
CC

B

DD

B

CD

B

x y
k T k T k T

x, 
 � � � �
�

�
�

�

�
� �

1

576
3 22[ ] [ y

k T k T

CD

B

DD

B

]2 � �
�

�
�

�

�
�

�
�
�

� �

2 1 1 2� � �
�

�( )( ) ( )� � �
�

�
�

�

�
� �

�
 
!

x y
k T

DD

B

(26)

(The coefficient z/2 = 3 that multiplies the overall energy term in (26) should be re-

placed by (z – 2)/2 = 2 for comparison with (25) Firstly, the �site from the LCT “pedes-

trian” approach of (25) depends on the blend composition �. Secondly, �site exhibits a

much richer dependence on compositions x and y than � site

, of (26), and, finally, �site
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contains sequence dependent contributions arising from the completely random char-

acter of the two copolymers, i.e., from their statistically averaged monomer se-

quences. For symmetric isotopic PB blends (� = 0.5), (25) simplifies to,

�
� � �

�site
CC

B

DD

B

CD

B

x y
k T k T k T


 � � � �
�

�
�

�

�
�

1

576

1

24
22 2[ ] { x y x y xy3 3 2 21 1� � � � �� � �( ) ( )

+ 42[ ] } { (� �
� �

� � �x y xy
k T k T

x yCD

B

DD

B

� � � �
�

�
�

�

�
� � � �2 2 22

1

24
2 1 ) [ ]2 286 87xy x� �� �

+ [ ] } ( ) [ ]� � �
�

�
�

�

�
� � � �87 86

1

24
1 442�

�
�y

k T
x yDD

B

(27)

Setting � =1 in (27) yields the LCT interaction parameter �site for a symmetric (� = 0.5)

CxD1 – x/CyD1 – y polybutadiene blend,

�
� � �

site
CC

B

DD

B

CD

B

x y
k T k T k T

x
 � � � �
�

�
�

�

�
�

1

576

1

24
22 3[ ] { � � � �y x y xy3 242 2( ) }

+
1

24

2 2� �CD

B

DD

Bk T k T
x y x y�

�

�
�

�

�
� � � �{ } (28)

As evident from (28), the effective interaction parameter �site for a mixture of two

identical PB random copolymers (varying only in the percentage of 1,2 and 1,4 addi-

tion units) depends on two adjustable parameters, the exchange energy � = �CC + �DD –

2�CD for the C/D binary homopolymer blend and the van der Waals energy difference

� = �CD – �DD. Equation (28) differs considerably from the well known formula of FH

random copolymer theory [2,3],

�
� � �

site

FH CC

B

DD

B

CD

B

z

k T k T k T
x y

( )
[ ]
 � �

�

�
�

�

�
� �

2
2 2 (29)

The differences between (29) and (28) become more transparent when (28) is rewrit-

ten in a form that maintains symmetry between the energies �CC and �DD,
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�
� � �

site
CC

B

DD

B

CD

B

x y
k T k T k T

x y
 � � � �
�

�
�

�

�
� �

1

576
22 2[ ] [ ]

11

6 24 24
� ��

��
�

��
x y

+
1

24
2 2 2 2 23 3 2 2 2 2� �CC

B

CD

Bk T k T
x y x y xy x y xy�

�

�
�

�

�
� � � � � � �[ ]

+
1

24
2 2 3 3 23 3 2 2 2 2� �DD

B

CD

Bk T k T
x y x y xy x y xy�

�

�
�

�

�
� � � � � � �[ � �x y] (30)

A knowledge of the interaction parameter �site enables computing phase bound-

aries from the standard stability condition,

1 1

1
2 0

1 2M M
site

� �
��

�
� 


( )
(31)

for incompressible binary systems. Figure 2 depicts a few examples of the spinodal

curves y(T = const, � = const) = y(x) for isotopic unsaturated polybutadiene blends.

The polymerization indices for both random PB copolymers are assumed to be identi-

cal and equal, N1 = N2 = 103, while the microscopic van der Waals energies �CC, �DD,

and �CD and the scaling deuterium-hydrogen factor � are taken from our previous fits

[25] of (26) to the SANS data of Jinnai et al. [18] for these mixtures. Although we do

not expect that these four adjustable parameters would change substantially if the

new (25) is used instead in the fitting procedure, the examples of Figure 2 should be

treated as illustrations of general trends rather than as quantitative predictions. The

three spinodal curves in Figure 2 correspond to three different blend compositions � =

0.5, � = 0.25, and � =0.15. The phase boundaries for the compositions � = 0.75 and � =

0.85 have been found to be very similar to those for the respective symmetrical com-

positions � = 0.25 and � = 0.15 and, therefore, are not shown in the figure. The region

inside the loop represents an immiscibility window, which shrinks more as � departs

further from the symmetrical value of � =0.5. Far away from the diagonal y = x, �site is

negative, and the system is miscible; closer to y = x, the interaction parameter �site

changes its sign to positive and produces an immiscibilty window from the competi-

tion with the positive entropic terms. Preliminary calculations for isotopic blends of

the saturated polybutadienes yield a miscibility window that borders around the diag-

onal y = x in qualitative accord with predictions of random copolymer FH theory.
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DISCUSSION

A new version of the copolymer lattice cluster theory is developed to describe bi-

nary blends of two structured monomer copolymers in the simplifying limit of an

incompressible system and high molecular weights. This version represents a significant

improvement over our previous extension [16] of the random copolymer FH theory

which, in turn, contains two significant advances over prior Flory-Huggins type ran-

dom copolymer theories. The present extension combines these two previous ad-

vancements with another major improvement. The two advances in our previous

“pedestrian” LCT for random copolymers are: a) the definition of polymer-polymer

interactions in terms of the more realistic interactions between united atom groups

and b) the explicit addition of the temperature independent portion �s of the effective

interaction parameter � (with no adjustable parameters) which is evaluated from the

lattice cluster theory in the simplifying incompressible system, athermal, fully flexi-

ble, long chain limit. The present modification of the theory lies in including the ever

Lattice cluster theory for copolymer... 541

Figure 2. Phase boundaries y(T = const, � = const) = y(x) for the miscibility of the isotopic

polybutadienes blends for three different blend compositions � =0.5, 0.25, and 0.15. The small-

est closed loop immiscibility window refers to the lowest composition � =0.15, while the larg-

est loop corresponds to � =0.5. The temperature is chosen as T = 450 K and the polymerization

indices of the two PB random copolymers are assumed to be N1 = N2 = 103 for all three blend

samples. The deuterium-hydrogen scale factor � and the van der Waals energies �CC, �DD, and

�CD have been taken from our previous fit [25] of (26) to the SANS data of Jinnai et al. [18], but

the {���} are rescaled by a factor z/(z – 2) (with z = 6) to account for the presence of two differ-

ent proportionality coefficients between the exchange energy � and the effective interaction pa-

rameter �site in (25) and (26). Thus, we use �CC = z/(z – 2) * 390.24 K, �DD = z/(z – 2) * 406.85 K,

and �CD = z/(z – 2) * 398.46 K. The deuterium-hydrogen scale factor � = 0.987 is taken as un-

changed.



present nonrandom mixing effects which, in turn, lead to a composition and monomer

structure dependence of the contact probabilities for the effective interactions and to

a monomer sequence dependence of the free energy without the addition of new ad-

justable parameters. Thus, the enthalpic portion of the effective � parameter becomes

composition and monomer sequence dependent.

The general theory of section 1 applies to blends containing random copolymer,

diblock copolymers, alternating copolymers, as well as of copolymers with

kinetically controlled monomer sequences, while section 2 illustrates the general

theory for purely random copolymer blends of deuterated and hydrogenated

polybutadienes. The calculated closed loop phase boundaries (in copolymer compo-

sition space) for these systems lie entirely outside the scope of classical FH random

copolymer theory [2,3] which ignores the presence of �s. However, the application of

the new theory requires the determination of several monomer structure and mono-

mer sequence dependent geometrical factors, a process that is more complicated than

calculating the geometrical coefficients in the corresponding pedestrian lattice clus-

ter approach [19] for homopolymers blends. Nevertheless, the calculations of the

geometrical factors (see Appendix) are fairly straighforward and yield rather com-

pact algebraic expressions that are quite easy to apply.

Our new theory provides physical insights into the origin of the monomer se-

quence dependence of the free energy. Equations (5) and (6) demonstrate that this se-

quence dependence arises from sequentially bonded triads and tetrads of united atom

groups lying on the same copolymer chain. For the polybutadiene example, this se-

quence dependence arises, as described [14] previously, from pairs of bonded mono-

mers on a single chain, but with no added parameters. This represents a large

departure from ad hoc extensions [8–10] of random copolymer Flory-Huggins theo-

ries that attempt to include a sequence dependence by introducing a set of parameters

�ijk,lmn (or �ij,kl) between triads (or diads) of monomers on two different copolymer

chains. However, a more appropriate comparison with the assumptions of the

phenomenological models [8–10] for the monomer sequence dependence is obtained

when (5) and (6) are specialized to the case where all A, B, C, and D monomers of the

AxB1 – x/CyD1– y random copolymer mixture are represented by single bead entities

(i.e., all A, B, C, and D monomers each occupy single lattice sites). As a further

simplification, we allow the two random copolymers to be identical (i.e, A �C and B �D),

apart from the compositions x and y. As expected, both sequence dependent terms 1

and 2 of (5) and (6) do not vanish. Our theory yields the monomer sequence depend-

ence as steming from triads or tetrads of sequential monomers on a single chain. The

energetic portion of the blend � parameter calculated from 1 and 2 exhibits a richer

dependence on the compositions x and y than of the conventional form (x – y)2. The

corrections 1 + 2 depend both on the exchange energy � = �CC + �DD – 2�CD and on

the energy difference � = �CD – �DD, thereby containing an extra parameter (�) be-

yond random copolymer FH theory [2,3], albeit a parameter of clear physical origins

and one that may be determined from independent measurements. This example sug-

gests that the ad hoc physical idea [8] of triad-triad interactions as the molecular ori-
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gins for the monomer sequence dependence of thermodynamic properties represents

a step roughly in the correct direction, but our more rigorous approach introduces this

sequence dependence through a proper evaluation of the copolymer “surface frac-

tions”. The final theory contains no new adjustable parameters beyond those already

present for treating binary blends of homopolymers constituted from the monomers

present in the copolymers chains.

Appendix

In order to evaluate the geometrical coefficients p N X Y Mi

X Y

i i

( ) ( )
( )/

$$$ � $ $ $3
of (5) and (6), we distin-

guish between bonds connecting neighboring monomers (denoting them with wiggly lines ~) and bonds

linking submonomers groups inside the monomers (designating them with solid lines –). Consider a sin-

gle AxB1 – x purely random copolymer chain which has, in addition to the A–A and B–B internal monomer

bonds, x(nA – 1), (1 – x)(nB – 1), and 2xnB A ~ A, B ~ B, and A ~ B connecting bonds, respectively (where

n� is the number of monomers of species � in a single chain). The number of A–A–A–A configurations

equals the number of monomers nA since there is only one such configuration (containing all united atom

groups in a 1,2 unit) in each monomer of species A. (See Figure 1 for the monomer structures for both A

and B species). Likewise, we have N
1

3( )
(B–B–B–B) = nB for the 1,4 monomers. Table 1 provides the total

numbers for all possible configurations of three sequential bonds when the structures for the A and B

monomers are represented by the united atom groups model of Figure 1 and when the sequence distribu-

tion is purely random. The number of connecting bonds in each configuration of Table 1 ranges from zero

to two. For a given bond pattern containing one or two connecting bonds, the corresponding N
1

3( )
(bond

pattern) factor is the product of the number of connecting bonds in a single chain and the appriopriate

symmetry number that reflects the connectivity of the internal monomers bonds in this pattern. For in-

stance, we obtain N
1

3( )
(A–A~A–A) = 2nA(nA – 1)/(nA + nB) as follows: The number of A~A connecting

bonds in a chain is obtained by multiplying the total number of connecting bonds in a chain, which is nA +

nB – 1, by the probability that both ends of a connecting bond belong to monomers of species A, which is

[nA/(nA + nB)]* [(nA – 1)/(nA + nB – 1)]. For each of the nA(nA – 1)/(nA + nB) connecting bonds A~A, the left

hand side bond A–A may lie either in the chain backbone or in the side group of the 1,2 unit, while the right

hand side bond A–A may be selected only from the chain backbone of the 1,2 monomer, i.e., in only one

way. Thus, the symmetry number equals 2 * 1 = 2.

Table 1. Monomer sequence dependent geometrical factors N
1

3( )
(chain pattern), N

1

2( )
(chain pattern),

p
1

( )chain pattern � lim
M1&' [N

1

3( )
(chain pattern)/M1], and r

1

( )chain pattern � lim
M1&' [N

1

2( )
(chain pattern)/M1],

for component 1 in the model of purely random copolymer PB blends. The monomer structures for
the species A and B are depicted in Figure 1.

chain pattern of k bonds N
k

1

( )
(chain pattern) lim

M1&'

N

M

k

1

( )
chain pattern( )

1

�

�
�

�

�
�

A–A–A–A nA (1/4)x

A–A~A–A 2
1n n

n n

A A

A B

( )�

� (1/2)x2

A–A–A~A 2
1n n

n n

A A

A B

( )�

� (1/2)x2

A~A–A~A
n n n

n n n n

A A A

A B A B

( )( )

( )( )

� �

� � �

1 2

1
(1/4)x3

B–B–B–B nB (1/4)(1 – x)
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Table 1 (continuation)

B–B~B–B
n n

n n

B B

A B

( )�

�

1
(1/4)(1 – x)

B–B–B~B 2
1n n

n n

B B

A B

( )�

� (1/2)(1 – x)2

B~A–A~B
n n n

n n n n

A B B

A B A B

( )

( )( )

�

� � �

1

1
(1/4)x(1 – x)2

A–A–A~B 2
n n

n n

A B

A B
� (1/2)x(1 – x)

A~A–A~B 2
1

1

n n n

n n n n

A A B

A B A B

( )

( )( )

�

� � � (1/2)x2(1 – x)

A–A~B–B 3
n n

n n

A B

A B
� (3/4)x(1– x)

A~B–B–B 2
n n

n n

A B

A B
� (1/2)x(1 – x)

A–A~B 3
n n

n n

A B

A B
� (3/4)x(1 – x)

A~B–B 2
n n

n n

A B

A B
� (1/2)x(1 – x)

The geometrical factors of (5) and (6) are the sums of those listed in Table 1,

p p p p p
A A A A A A A A A A A A A A A

1 1 1 1 1

( ) ( ) ( ~ ) ( ~ ) ($$$ � � � � � � �
 � � � ~ ~ )A A A x x x� 

� �4

4

2 3

(32)

p p p p p
B B B B B B B B B B B B B B B

1 1 1 1 1

( ) ( ) ( ~ ) ( ~ ) ($$$ � � � � � � �
 � � � ~ ~ )A A B x x x x� 

� � �6

4

2 3

(33)

and

p p p p p
A B A A A B A A A B A A B B A

1 1 1 1 1

( ) ( ~ ) ( ~ ~ ) ( ~ ) ($$$ � � � � �
 � � � ~ )B B B x x x� � 

� �7 5 2

4

2 3

(34)

Because of the structural identity of the 1,2 and 1,4 PB monomers in both blend components, the calcula-

tion of the geometrical factors p
C C

2

( )$$$
, p

D D

2

( )$$$
, and p

C D

2

( )$$$
procceds exactly as in (32–34), where the indi-

vidual coefficients p
2

(chain pattern)
follow directly from p

1

(chain pattern)
by substituting y for x in the third column of

Table 1. Finally, the required combinations compress to

p1 = p p p x
A A B B A B

1 1 1
4 2 4

( ) ( ) ( )
( ) /

$$$ $$$ $$$� � 
 � (35)

and

p2 = p p p y
C C D D C D

2 2 2
4 2 4

( ) ( ) ( )
( ) /

$$$ $$$ $$$� � 
 � (36)
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For completeness, Table 1 also summarizes the geometrical factors N
1

2( )
(X–X~Y) and r1 �

N
1

2( )
(X–X~Y)/M1 of (5) and (6). Similarly, r

C C D

2

( ~ )�
and r

C D D

2

( ~ )�
can be generated from r

A A B

1

( ~ )�
and

r
A B B

1

( ~ )�
by substituting y for x in Table 1.
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